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 ABSTRACT  
Background: Certain factors are known to influence the rate of enzyme activity. It is paramount to study such 

independent factors to obtain the ideal conditions required to maximize enzyme activity. The time-consuming 

traditional one-factor-at-a-time (OFAT) approach of evaluating the effect of independent variables on enzyme activity 

does not consider the interaction effects of the independent variables on dependent responses. Methods: The impact 

of four independent variables on fruit bromelain activity was evaluated using the complete factorial design of the 

experiment approach. Results: The highest actual fruit bromelain activity (76.83 U/ml) and predicted activity (74.81 

U/ml) were recorded at an optimum pH of 7.5, temperature of 50oC, and incubation period of 10 minutes using 

azocasein substrate. All tested variables except temperature; the interaction between substrate type and incubation 

time significantly affected fruit bromelain activity (p < 0.05). Conclusion: The design model analysed the main and 

interaction effect of the variables on bromelain activity. Therefore, complete factorial design is a better approach 

than OFAT to determine the effect of independent variables on fruit bromelain activity.  
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1.0 Introduction.   

Bromelain is a sulfhydryl protease extracted from the pineapple plant (Ananas comosus). Proteases catalyse the 

hydrolysis of peptide bonds within the polypeptide chains. Proteases are ubiquitous and broadly distributed in plants, 

animals and microorganisms, but plant proteases account for 43.85% of the total distribution [1]. The most abundant 

plant proteases with industrial and medical values are the cysteine proteases such as papain from pawpaw (Carica 

papaya), ficin from the latex of fig (Ficus spp.) and bromelain from the Ananas comosus [2]. 

Pineapple (Ananas comosus) belongs to the Bromeliaceae family. It is a popular edible fruit grown in tropical and 

subtropical countries, including Costa Rica, Brazil, the Philippines, India, Thailand, Nigeria, China mainland, 

Indonesia, Mexico, and Colombia [3]. The pineapple fruit is a global diet because of its distinctive sweet taste. It 

contains nutrients like fibre, vitamins, manganese, and copper. Only about one-third of the pineapple plant was 

considered valuable; the remaining two-thirds, comprising leaves, crown, stem, and peel, are treated as agricultural 

waste [4]. Numerous phytochemical studies have shown that pineapple wastes contain alkaloids, flavonoids, 

saponins, tannins, and bromelain, as present in the fruit extract [5]. 
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Bromelain has been the most attractive extract of the pineapple plant since its discovery. It is grouped into four: the 

stem (EC 3.4.22.32), fruit bromelain (EC 3.4.22.33), ananain (EC 3.4.22.31) and comosain bromelain, but the most 

prominent are the stem and fruit bromelain [6]. Fruit bromelain differs from stem bromelain because it has higher 

proteolytic activity and a broader specificity for substrates than bromelain [7,8].  

In plant physiology, bromelain plays a specific defensive role in protecting the pineapple plant throughout the 

developmental, maturation and ripening stages [9]. Bromelain is widely used as a meat tenderiser, solubilising and 

clarifying agent in the food and cosmetics industries because of its efficacy and lack of toxic side effects [10,11]. Its 

pharmaceutical and clinical usage includes reversible inhibition of platelet aggregation, modulation of cytokines and 

immunity, skin debridement, enhanced antibiotic absorption, wound healing, and fibrinolytic activity [10-11]. 

Like any other enzyme, the activity of bromelain is affected by substrate concentration, pH and temperature. Studies 

have reported the effect of some of these parameters on the activity of fruit bromelain using the traditional one-

factor-at-a-time (OFAT) approach [12-16]. The OFAT approach involves fixing all parameters while varying the 

variable under consideration. It is a straightforward approach. However, it is time-consuming and does not consider 

the interaction effect of variables. It is expensive to conduct with many experimental factors. Thus, this study aimed 

to evaluate the main and interaction effects of four independent variables on the activity of fruit bromelain using the 

statistical design of experiments method (DOE). 

2.0 Materials and Methods 

2.1 Materials 

Mature smooth cayenne pineapple fruit was collected from the National Horticultural Research Institute (NIHORT) in 

Ibadan-Oyo state and transported to the Biotechnology Advanced Research Centre (BARC) Laboratory, Sheda Science 

and Technology Complex (SHESTCO), Abuja, Nigeria. 

2.2 Methods 

2.2.1 Sample Preparation 

The crown was detached from the fruit before washing thoroughly with tap and distilled water. The fruit was peeled, 

and the core was separated from the fleshy part.  

2.2.2 Bromelain Extraction 

Bromelain was extracted according to the methods of [10,17]. Briefly, the fleshy part of the pineapple fruit was 

chopped into tiny bits and blended with a 10 mM Sodium phosphate buffer solution (Ph, 7). The homogenised solution 

was filtered through a triple-folded Muslin cloth. To free extracts of insoluble debris, filtrates were centrifuged at 

10,000 rpm for 10 min in a refrigerated temperature of 4 oC. The collected supernatant (crude extract) was 

frozen at –20 oC until further use.  

2.2.3 Enzymatic Assay of Fruit Bromelain Extract  

The activity of the bromelain extract was assayed via the product formation method using a 1 % casein solution. 

Absorbance was read at 275 nm in a UV-VIS spectrophotometer, and bromelain activity was extrapolated from the 

tyrosine standard curve prepared with 0.1 mg/ml tyrosine stock solution and diluted to a working solution of 20 -120 

µg/ml [10,12]. Azocasein (2 %) was used for the substrate utilisation assay approach, and absorbance was read at 

440 nm. A molecular mass of 23.6 kDa and a percentage extinction coefficient (E1%) of 35 were used to 
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determine the concentration of azocasein utilised [18,19]. Bromelain activity (U/ml) was calculated based on the 

expression: 

 Conc of A (µmol)  ×  B   

𝐶 × 𝐷
 

Where A = Tyrosine or Azocasein, B = total volume (ml) of the reaction assay, C = volume (ml) of the bromelain 

extract used and D = time (min) of the reaction incubation.  

2.2.4 Statistical Design of the Experiment 

The effect of pH, substrate type, temperature and incubation time on the activity of fruit bromelain was evaluated 

based on a complete factorial design with 22 runs comprising 6 central points generated using the Design Expert 

software version 13 (Stat-Ease Inc., Minneapolis, MN, USA). Parameter values were chosen based on optimum 

conditions reported in literature [20-22]. 

3.0 Results and Discussions 

3.1 Effect of pH, Substrate type, Temperature and Incubation time on the Activity of Fruit Bromelain. 

Enzymes have maximum activity at optimum pH and temperature. A reduction in optimum conditions of these 

parameters slows down the rate of enzyme activity. An increase above the optimum range also decreases enzymatic 

activity due to the enzyme's denaturation and reduction in substrate binding specificity [23]. This study recorded 

maximum bromelain activity of 76.83 U/ml in run number 2 (Table 1) at an optimum pH of 7.5, temperature 

of 50 oC, and incubation time of 10 min with Azocasein substrate type. These corroborated the optimum 

conditions previously reported in literature [20-22]. 

However, these optimum conditions also produced lower bromelain activity when visualised separately without 

considering their interaction effects. Run numbers 3, 6, 10, 12, 17, 18, and 20 produced varied and lower bromelain 

activity within the 56.23-70.47 U/ml despite being assayed at an optimum pH of 7.5. Run numbers 3, 9, 11, 12, 14, 

and 19 produced varied and lower bromelain activity within the 53.17-69.40 U/ml despite being assayed at an 

optimum temperature of 50 C. A similar trend was observed with type of substrate and incubation time at run number 

(1, 6, 7, 10, 13, 14, 15, 16, 19, and 20) and (4, 6, 7, 1, 12, 14, and 18) respectively. This implies that the correct 

combination of optimum conditions is essential for optimum enzymatic activity, which is not possible with 

the OFAT approach. The optimum conditions were obtained simultaneously within a run (number 2) of all 

the 22 experimental runs, thus saving time and resources that would have been utilised with the OFAT method, 

which requires separate runs for each of the four parameters.   
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Table 1: Effect of independent variables on the activity of fruit bromelain 

Run pH Substrate Temp (oC) Incubation 
time (min) 

Actual 
Bromelain 
activity 
(U/ml) 

Predicted 
Bromelain 
activity 
(U/ml) 

1 6.5  Azocasein  30  30  58.23 56.31 

2 7.5 Azocasein  50  10  76.83 74.81 

3 7.5  Casein  50  30  56.23 55.09 

4 6.5 Casein  30  10  53.00 53.11 

5 7.0  Casein  40  20  54.20 56.41 

6 7.5  Azocasein  30  10  70.47 70.71 

7 6.5  Azocasein  30  10  65.33 64.21 

8 7.0  Casein  40  20  60.13 56.41 

9 6.5  Casein  50  30  53.17 52.58 

10 7.5  Azocasein  30  30  60.63 58.82 

11 6.5  Casein  50  10  57.10 57.21 

12 7.5  Casein  50  10 62.70 63.71 

13 7.0  Azocasein 40  20  60.90 63.24 

14 6.5  Azocasein  50  10  69.40 68.31 

15 7.0  Azocasein   40  20  60.05 63.24 

16 7.0  Azocasein  40  20  60.77 63.24 

17 7.5  Casein  30  30  55.61 56.26 

18 7.5  Casein  30  10  60.83 59.61 

19 6.5  Azocasein   50  30  55.70 55.14 

20 7.5  Azocasein  50  30  57.37 57.66 

21 7.0  Casein  40 20  54.90 56.41 

22 6.5  Casein  30  30  52.67 53.74 

 3.2 Interaction Effect of Independent Variables on Fruit Bromelain Activity 

The main and interaction effects of the independent variables on fruit bromelain activity are illustrated with the Pareto 

plot (Figure 1). Positive effects corresponded to high activity, and negative effects corresponded to low activity. An 

increase in the interaction term between incubation time and other factors: pH (AD), substrate type 

(BD), and temperature (CD) decreased fruit bromelain activity just as an increase in incubation time alone beyond 

the optimum value reduced enzyme activity. This explains the lower fruit bromelain activity recorded in run 

numbers 1, 10, 13, 16, 19, and 20 in Table 1.  

An increase in pH and temperature increased fruit bromelain affinity for azocasein, thus resulting in higher fruit 

bromelain activity. This finding corroborated the high thermal stability, better affinity for azocasein and alkaline 

nature of fruit bromelain reported by [8, 12, 22]. Incubation time, substrate type, pH and the interaction effect of 

incubation time with substrate type laid above the Bonferroni limit, indicating that these factors significantly 

affected bromelain activity (p < 0.05) [24]. The temperature-incubation time interaction term (CD) between the 

Bonferroni and t-limit lines was only highly probable to have significantly affected bromelain activity. In 

contrast, factors that appeared below the t-limit line were insignificant (p > 0.05) [24, 25]. 
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Figure 1: Main and interaction effect of four independent factors on fruit bromelain activity. 

  

3.3 Generation of Regression Equation and Validation of the Model. 

Data in Table 1 were fitted automatically by the software to a regression equation (Equation 1) to predict the fruit 

bromelain activity. There was no significant difference between the actual and predicted experimental 

values (p > 0.05) (Table 1). Therefore, the model equation was suitable for predicting the fruit bromelain 

activity.  ANOVA of the fitted mathematical model (Table 2) showed that the randomised 2-level factorial model with 

an F-value of 23.53 is significant, and there is < 0.0001 chance that an F-value this large could occur due to noise. 

The lack of fit F-value of 0.77 implied that the lack of fit is not significant relative to the pure experimental error, and 

there is a 66.68 % chance that a lack of fit F-value this large could occur due to noise. The non-significant lack of fit 

is good because the primary objective is for the model to fit the experimental data. The R² value of 0.9217 shows 

that the model obtained gave a reasonable estimate of the bromelain activity in the range studied. The Predicted R² 

of 0.8485 is in sufficient agreement with the adjusted R² of 0.8825 because the difference is less than 0.2. Adequate 

precision measures the signal-to-noise ratio. As a rule of thumb, a ratio greater than 4 is desirable [26]. Thus, a 

ratio of 17.442 in this study indicated an adequate signal that this model can be used for this study.  

Fruit bromelain activity (U/ml) = +59.83 + 2.25 pH + 3.42 Substrate + 0.7331 Temp – 4.13 Incubation time – 

0.9956 pH * Incubation time – 2.13 Substrate * Incubation time – 1.32 Temp* Incubation time (Equation 1). 
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Table 2: ANOVA for the effect of four independent variables on fruit bromelain activity 

Source Sum of 
Squares 

Degree of 
freedom 

Mean 
Square 

F-value P-value   

Model 735.71 7 105.1 23.53 < 0.0001 significant 

A-pH 81.32 1 81.32 18.2 0.0008   

B-
Substrate 
type 

256.64 1 256.64 57.45 < 0.0001   

C-Temp 8.6 1 8.6 1.93 0.187   

D-
Incubation 
time 

272.66 1 272.66 61.04 < 0.0001   

AD 15.86 1 15.86 3.55 0.0805   

BD 72.89 1 72.89 16.32 0.0012   

CD 27.75 1 27.75 6.21 0.0259   

Residual 62.54 14 4.47       

Lack of Fit 41.12 10 4.11 0.7678 0.6668 not 
significant 

Pure Error 21.42 4 5.36       

Cor Total 798.25 21         

Statistical parameters for the model 

Std. dev. 2.11 R-Square 0.9217       

Mean 59.83 Adj. R-
Square 

0.8825       

C. V % 3.53 Pred. R-
Square 

0.8485       

PRESS   Adeq. 
Precision 

17.4416       

4.0 Conclusion 

Based on the higher fruit bromelain activity recorded when the optimum conditions for the reaction 

rate were considered simultaneously along with their interaction terms, it can be concluded that the statistical design 

of the experiment compared to the one-factor-at-a-time method is a better approach to evaluating the effect of 

independent variables on the fruit bromelain activity. Validation of the model result also showed that a 2-level 

complete factorial design can be used to assess the impact of independent factors on the bromelain activity. 
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